Handling class imbalance problem in miRNA dataset associated with cancer

نویسنده

  • Ram Kothandan
چکیده

MiRNAs are small (~22nt long) non-coding RNA sequences; binds to the complementarity target sites in 3' Untranslated Region (UTR) of mRNA sequences but not restricted to other mRNA regions viz., 5' UTR and Coding sequences (CDS). Complementarity binding of miRNA to mRNA target sites either results in complete degradation of the mRNA itself or it may regulate the mRNA as an oncogene or as a tumor suppressor gene. However, the exact mechanism involved in identifying a miRNA to be associated with cancer is still unclear. Further, with the outburst in the number of miRNAs sequences recorded every year in miRBase, the gap is still widening mainly due to the laborious and economically unfavorable experimental procedures associated with the functional annotation. Motivated by the fact, we constructed a two-step support vector machine-based predictive model - miRSEQ and miRINT. However, the major pitfall during the construction of the model is the class imbalance problem. Hence, in order to overcome class imbalance problem, in the present study we empirically compare the effectiveness of two different methods viz., Synthetic Minority Oversampling Technique (SMOTE) and cost-senstive learning method. Performance measures were evaluated in terms of Precision and Recall. Based on our result, it was observed that for miRNA dataset with high class imbalance utilized for predicting association of cancer, cost-sensitive method outperformed the oversampling method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem

Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...

متن کامل

Breast Cancer Diagnosis from Perspective of Class Imbalance

Introduction: Breast cancer is the second cause of mortality among women. Early detection is the only rescue to reduce the risk of breast cancer mortality. Traditional methods cannot effectively diagnose tumor since they are based on the assumption of well-balanced dataset.. However, a hybrid method can help to alleviate the two-class imbalance problem existing in the ...

متن کامل

Improving classification of mature microRNA by solving class imbalance problem

MicroRNAs (miRNAs) are ~20-25 nucleotides non-coding RNAs, which regulated gene expression in the post-transcriptional level. The accurate rate of identifying the start sit of mature miRNA from a given pre-miRNA remains lower. It is noting that the mature miRNA prediction is a class-imbalanced problem which also leads to the unsatisfactory performance of these methods. We improved the predictio...

متن کامل

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

متن کامل

Safe Level Graph for Majority Under-sampling Techniques

In classification tasks, imbalance data causes the inadequate predictive performance of a tiny minority class because the decision boundary determined by trivial classifiers tends to be biased toward a huge majority class. For handling the class imbalance problem, overand undersampling are applied at the data level. Over-sampling duplicates or synthesizes instances into a minority class. Althou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015